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In the present article we identify a special class of wave motions, called dissipation- 
gravity waves (DGWs), on the basis of an asymptotic analysis of the equations for free con- 
vection over a localized heat source. We obtain a steady-state solution in the limit t ~ ~, 
calculate the wavelength and direction of propagation, and determine the nature of the par- 
ticle motion. We compare the results with data from experiments, in which this type of wave 
motion was regarded as zero-frequency internal waves [1-3]. 

The structure and properties of free convective flows over a localized heat source in a 
stably stratified medium have been subjected to extensive investigation both theoretically 
[4, 5] and experimentally [i, 2, 6]. The flow pattern formed upon actuation of a heat source 
in a medium initially at rest depends on the type of stratification. In a temperature-strat- 
ified fluid a convective plume mushrooms upward about its axis at the neutral buoyancy level 
[7]. The flow pattern over a heat source in a medium with salinity stratification is more 
complex and includes not only main buoyant plume per se, but also a system of vortex cells 
if the power of the source exceeds a critical value, along with a system of transient inter- 
nal waves [i, 2, 6, 8]. 

As an illustration, Fig. 1 shows a motion picture shadowgraph of free convective flow 
over a warm heating element (a vertical cylinder of height 0.01 m and diameter 0.008 m con- 
taining a resistance heater) in a medium with a constant salinity gradient, a stratification 

scale As=l~)dpo(z)/dz-1=56 m, and a buoyancy period T b = 2~S/g = 15 sec, where p0(z) = 

p0[S0(z)] is the density, S0(z) is the salinity, z is the coordinate along the vertical axis, 
and g is the free-fall acceleration. The power input is P = i W, and the heating duration is 
30 min. Energy is released uniformly over the surface of the cylinder. The shadowgraph was 
obtained by the conventional technique using a vertical slit and a flat Foucault knife edge 
at the focus; the variations of the optical density are proportional to the fluctUations of 
the horizontal component of the refractive index and the density, which are linearly related 
for solutions of sodium chloride in water [9]. 

The structure of the convective thermoconcentration flow does not depend on the type of 
localized heat source [6]. The main structural elements of the flow are shown in Fig. 2. 
The released heat is concentrated in a bounded zone above the source (region A); this zone 
radiates a heightwise-regular system of perturbations of the primary salinity field W, i.e., 
DGWs (or ZFWs [i, 6]), into the surrounding medium. In certain strong convection regimes, 
ordinary transient internal waves (TIWs) are also radiated from region A into the surrounding 
medium [3]. 

Region A contains a heated ascending convective plume i, a dome of high-salinity liquid 
2, and a system of convective vortex cells 3. The high-salinity liquid is entrained in the 
main plume from the level of the heater. Since heat is transferred more rapidly than salt, 
the liquid particles begin to heat upon reaching the top and then essentially return to the 
original level as they cool. When this happens, the primary vortex surrounding the ascending 
plume closes. The outer shell of this vortex, acting as a secondary heat-releasing element, 
generates a system of convective cells, in which the liquid flows toward the heated dome and 
away from it, transferring heat into lower-temperature regions. Significantly, the boundary 
regions between the main dome and the system of cells (and, accordingly, between the cells) 
are shear layers, where the velocities of the liquid particles are in opposite directions on 
opposite sides of the layer with the enhanced density gradient (the liquid flows downward 
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Fig. i F i g .  2 

along the inner surface of the main dome and upward along the outward surface as it is heated 
in the secondary cells). The liquid flows away from the center of the convection zone in the 
upper part of the convective cells and toward the center in the lower part. In the zones 
where the external liquid is entrained, the sharp boundary of the shell gives way to a more 
diffuse boundary. The pattern of streamlines is indicated by arrows in Fig. 2. 

The main distinguishing features of the flows in region A are the high-gradient layers, 
i.e., the shells of vortex flows, including both the primary vortex R1 surrounding the ascend- 
ing plume and the smaller-scale vortices R2, ..., R5 forming the regular system of convection 
cells. In the shadowgraph of Fig. 1 the high-gradient shells are represented by thin elon- 
gated oblique light bands on the left side of the convective flow and by dark bands on the 
right side (the complementary dark bands on the left side and light bands on the right side 
are not altogether fully developed in the photographs, owing to the limited dynamic range of 
both the shadow technique itself and the film used to record the effect). The width of the 
high-contrast intermediate boundary layer corresponds to half the true thickness of the high- 
gradient shell. 

The convective cells proper are outlined by the sharp oblique upper shell and the more 
diffuse horizontal lower shell. The higher-temperature, higher-salinity liquid in the upper 
part of the primary vortex El and the secondary vortices R2, ..., R5 is unstable against 
small-scale perturbations and forms thin vertically elongated striae or "salt fingers" [i, 
3]. In Fig. i the "salt fingers" fill the space between the ascending plume and the dome and 
continue in the interior of the convective cells in the region adjacent to the main vortex 
core of the flow. 

The system of DGWs is represented by diffuse dark and light bands running from the con- 
vection region into the surrounding medium. The optical density along the phase surfaces de- 
creases with increasing distance. Each wave is associated with a corresponding cell. The 
vertical scale of the spacing between waves is determined by the height of the generating 
cell, and the angle of inclination of the phase surfaces of the DGWs relative to the hori- 
zontal is a maximum in the generation zone at the boundary of the cell and decreases with in- 
creasing distance. The flow pattern evolves in the course of heating. In the given regime 
new cells are formed above the plume (vortex R5 in the diagram of Fig. 2). The stable regis- 
tration of a new wave begins with the advent of a high-gradient fold, which evinces closure 
of the vortex motion inside the cell. The slow flows in the heated region A, which corre- 
spond to the general light background on the right side and to the darkened background on 
the left side of Fig. i, do not radiate DGWs. 

The resulting flow pattern is described by the complete system of nonlinear thermody- 
namic equations. Because of the complexity of their analysis, it is customary to investigate 
linearized equations describing the flows outside region A [I0, ii]. In our specific situ- 
ation this approach enables us to discern and describe the properties of DGWs, which are re- 
corded outside the convection region in all cellular flow regimes [i, 6]. 

i. Statement of the Problem. The complete system of equations for thermoconcentration 
convection in a liquid with stable primary salinity and temperature stratification has the 
form (see [12], p. 95). 

vp 
o (Ou/Ot + (u.V) u) = -- Vp + ~pAu + -~ V (V. u) + P0 (~S' -- sT') g~ 

OS/Ot ~- V'(uS)  = ksAS, OT/Ot -~- V ' (uT)  = %AT + Q(H; t), 
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Op/Ot + V.r = - a p o O ( R ;  t), ,o = po(l + I~S - ~ T ) ,  

S = So(z) q- S ' ,  2" = To(z) + T ' ,  

g 

(1.1) 

Here u is the velocity of the medium; p is the total pressure minus the hydrostatic pressure; 
S, S0(z), and S' are the total, stratified, and excess salinities; T, T0(z), and T' are the 
total, stratified, and excess temperatures; S o and T o are the salinity and temperature at the 
level z = 0; p is the density of the medium; P0 is the density of the pure liquid; a, 6, X, 
~, and k S are the coefficients of saline and thermal expansion, the thermal diffusivity, the 
kinematic viscosity, and the salt diffusion coefficient; A S and A T are the scales of salinity 
and temperature stratification; Q(R; t) is a function describing the heat source, and g is 
the gravitational force vector, which is oriented in the negative z-direction. We use the 
linearized form of the equation of state p(T, S) and ignore the compressibility of the medium 
[12]. The system (i.i) is completely defined; the number of unknowns (u, p, T, S, p) is 
equal to the number of equations. 

The objective of the analysis is to exhibit DGWs and to determine the principal charac- 
teristics. As mentioned in the introduction, the system of DGWs exists outside the convec- 
tion zone, each wave is generated by its own corresponding convection cell, and the DGWs do 
not interact with each other. These conditions enable us to investigate the properties of a 
single wave generated by the gradient shell by linearizing the equations and invoking the 
Boussinesq approximation, whereupon the system (i.i) is reduced to the system 

I Vp + vAt, -5 ([5S' - -  a T ' )  g ,  Ou/Ot -~ - ~o- 7 

OS'/Ot -5 V.(uSo (z)) = ksAS', O U / g t  -5 V. (uTo(z)) = xAT' -5 Q6 (z)6 (r) 0 (t),, 2rer 

o ( p s ' - ~ T ' ) / o t  + v . (u (1 + l~So (z) - czTo (z))) = - -  czO ~ (*) ~ (~) o (t),: �9 2nr 

( 1 . 2 )  

in which Q = P/cpP0. 

The representation of the system (1.2) implies that the outer boundary of the high- 
gradient shell of the cell is interpreted as a secondary heat source of constant power P, 
which is actuated at the initial time t = 0. This secondary source serves as the reference 
origin in the coordinate system (r, z) (r is the horizontal, and z is the vertical coordi- 
nate). It should be noted that in Eq. (1.2) [as in Eq. (i.I)] the condition V.U = 0 is not 
used, because it would be inferred from the last three equations of the system (1.2) [and 
from the corresponding equations (i.i)] that A(~ksS' - ~xT') = 0 in the case of a pure sole- 
noidal velocity field. It follows from this relation, in conjunction with the extinction of 
the perturbation fields S' and T' at infinity, that SksS' = ~X T', which contradicts the ex- 
perimental results. 

The velocity field, which is axisymmetrical, admits the representation [13] 

u = v § w ,  v = - - V  h, mr = - - O q V O r ,  w~---- --O~F/Oz, o( o) 
A,,Op+02~/0z 2 = 0 ,  A ~ = r - ~ 7 7  r 7 7  " 

Here w r and w z are the radial and vertical components of the solenoidal part of the velocity, 
and h, ~, and �9 are unknown functions of the coordinates and time. 

We write the components of the total velocity vector in the form 

a2] J'@ (r, ~, ur = - -  Oh~Or - -  O-V&' uz = - -  Oh/Oz -5 AT]~ / = t) d ~  

0 

(1.3) 

where the unknown function f is related to the familiar stream function by the equation ~ = 
r3f/ar. The substitution of Eq. (1.3) into (1.2) reduces the basic system to the equations 
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o 
(O/Ot - -  %h) (O/Ot - -  ks  h)  (O/Ot - -  vh)  A] - -  k s D 2 A h J  + N ~ -gF A~I = Q (O/Ot - ksA) 5 (R) 0 (t), 

(t -- Z/ks) Q 
h = ~vk'2 AAI + 0 (t), 

gD 2 4~AsD2R 

(R) = ~ (~(~).  

( 1 .4 )  

Applying the Fourier-Bessel transform 

= 2= j _ / (r, z~ t) exp (ikzz -- io)t) dt dz r]o (krr) dr 

(J0 is the zeroth-order Bessel function of the first kind) to Eq. (1.4), finding the trans- 
form of the function f(r, z, t), and taking the inverse transform, we obtain an integral 
representation for f(r, z, t): 

] ( , ,  z, t) ( 2 ~  , ~ ( ~ + ~ k ~ ) ( . o + ~ k D ( ~  + ~ ~ ~ ~ ~ ( 1 . 5 )  vk ) -~ ksD ~ k r ~-~oJN k r ! krYo (k~r) dk~. 

Here k 2 = kr 2 + kz ~, and Vp(i/~) is a function in the principal-value sense, whose properties 
are given by the relation 

q) ((o) Vp----t d (o=  lim ~ ( ~ d o +  V(~) do) . 

The representation (1.5) decomposes into two parts: 

/s t  --  (2~-~ vxk6 _~_ D2k~ " j krJo (]~rr) dkr; (l.6a) 

+~ 

Jim Q If! [F1 (kr, kz) exp (--  a~t) + F 2 (kr, kz) exp ( - -  a2t ) + ( 1 . 6 b )  
(2"~) 2 

+ F 3 (k,., k~) exp (-- aat)] exp (-- ik~z) dk~} k~Y o (k~r) dk~ 

(ai = ai(k~, k~), Rea~ > 0). 

The explicit forms of the functions Fi(kr, kz) and ai(kr, kz) are too cumbersome to give here. 
The first part is time-invariant and describes DGWs, while the second part is time-dependent 
and describes both the transient process in the formation of DGWs [of course~ with allowance 
for Eq. (l.6a)] and the structure of the associated unsteady flows. 

At the initial times, both steady and unsteady flows exist at a fixed point of space at 
a finite distance from the source. After a certain time interval has elapsed, the oscilla- 
tions described by Eq. (l.6b) die out, and the flow is described by relation (l.6a) alone. 

2. Structure of Dissipation-Gravity Waves. To find the DGW velocity field, we analyze 
the asymptotic behavior of fst at large distances from the heat source along a designated 
direction, which is characterized by the quantities ~ (tangent of the angle relative to the 
horizontal) and R (distance from the source). 

The steepest-descent method [14] and the representation (1.3) give estimates of the 
radial and vertical components of the velocity u at R >> (2vx/D=)I/4- 
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u r - - U ( ? , R ) s i n { (  D2(t-+?2)~1/44v Z j R - - g / 4 }  

u ~  --'~u (v' R)c~ + vD)~/~R- ~/4 } 

v (v, B) = 'Q  x_r 8riD (vX)I/2R ~ P].-- ( D2 4v% 

( 2 . 1 )  

The DGWs generated by the potential part of the velocity are described entirely by the 
first term for h in Eq. (1.4). The resulting cumbersome expression is not written out, since 
the ratio between the potential and solenoidal parts of the DGW velocity is proportional to 
(xvN2/gD2)(D2/4vX) 3/4 << i in the asymptotic region, and the contribution of the function h 
can be disregarded. 

Equations (2.1) describe waves with a time-invariant velocity field. It follows from 
Eq. (2.1) that the nature of these waves is determined by the combined influence of dissipa- 
tive processes (as attested by the existence of the coefficients X, v, and k S in the repre- 
sentation of the velocity field) and buoyancy forces (coefficients D 2 and N2). For this rea- 
son, the term "dissipation-gravity" waves is better suited to such waves than the term "zero- 
frequency" waves [1-3], because it more accurately reflects their essential nature. It is 
also evident from Eq. (2.1) that a DGW is characterized by a wavelength 

[ ftu ~1/4 
7~= 2U/D ~(1+{)) ( 2 . 2 )  

and the magnitude of the energy flux density vector q = 0u(u2/2 + cvT' + P/0) reaches a max- 
imum at values of T close to zero, dictating the almost horizontal propagation of these waves 
at large distances from the source. ! 

It is important to investigate the paths of particles involved in dissipation-gravity 
oscillations. Following Sretenskii [15], we write the dynamical equations for the fluid me- 
dium, making use of Eqs. (2.1): 

dz 
dt 

dF 

dt 
"CA exp { - -  B ~ }  sin ( - -  B ] / T  + z ~ - -  ~/4 - -  rot), 

V ~ + ~ 

?2A 
exp i - B  V ~ I  cos ( -  B V ~ +  ~ - ~ / 4  - ~ot). 

V7 ~ + z -~ 

( 2 . 3 )  

Here 

Q . B = I D Z ( t + T 2 ) ~  " 
A - -  

8riD (VZ) 1/2 ' [ ] 4 V ) ~  ' 

and the substitution R = = r 2 + z 2 has been made. The integration in Eq. (2.3) is carried 
out on the basis of the series expansion of r and z in powers of the parameter T: 

r = ro(t ) + ?i/2r1(t) + ?r2(t) + .... 

z = zo(t ) + ?3/2zl(t ) + ?3z2(t ) + ... (2.4) 

The substitution of Eq. 
terms lead to the result 

(2.4) in (2.3) and the evaluation of the zeroth- and first-order 

ro(t ) = ~, zo(t) = ~, 

exp { - -  B 1/cr ~ + 72~2 } cos ( - -  B 1 / ~  + 72~2 _ 

- -  ~'~/4 - -  o.)t) J[-- C 1 ,  

A 
rl (t) = m V - J +  ?~2 

A z~ (t) = ~ _ _  exp { - -  B V ~ ~ }  sin ( -  B ] /=2 + 72~2 _ 

- - u / 4 - - m t ) - [ - C 2 ,  

(2.5) 

where ~, ~, C I, and C 2 are constants. 
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The constants C 1 and C 2 are determined in such a way that a and 8 will be the Lagrangian 
coordinates of a moving liquid particle. We eventually arrive at the approximate path equa- 
tions 

A? 1/~ , 

~p { -  B V ~  ~ + v~l~ ~] [~o~(- z; V ~  + ~,~ - 

- ~,,4 - +t) - cos (- 8 V~ + v~ '~ - ~/4)], 

A~,a/2 e,:p { - ~ V~+ + ~ ' ~  } [~ i .  ( -  ~ F ~  + v ~  ~ - z = ~ + + V ~  ~ + v ~  ~ 

- ~,,,4 - +t )  - si~ ( -  ~ F ~  ~ + v~V - ~,;~)]. 

(2.6) 

Passing to the limit m + 0 in relations (2.6) and simultaneously combining the expres- 
sions for r and z, we obtain the ellipse equation 72(r - a) 2 + (z - 6) 2 ~ [A273/(a 2 + y2~2)]. 

exp{-2B/a 2 + 7262}, for which the ratio of the vertical to the horizontal semiaxis is equal 
to y. 

It is evident from this analysis that the theoretical and experimental results (see Fig. 
i) agree. A more detailed quantitative comparison of the experimental and theoretical re- 
sults requires measurements of the vertical and horizontal density gradients and flow velocity 
field in the DGW zone, so that additional experiments must be performed. 

Equations (1.1)-(1.4) give the excess density in the form p' = p0(~S' - sT') = (v/g)aAf. 
In the DGW propagation zone the ratio between the vertical and horizontal excess-density 
gradients is proportional to l/y, indicating the existence of almost horizontal high-gradient 
boundaries, as seen in Fig. I. 

Another interesting problem is the stability of DGWs against perturbations of the den- 
sity distribution (initial stratification). In real media v >> X >> ks- If the condition 
xA T >> ksA S holds (as is true in a broad class of physical situations), I varies only slightly 
for small and even fairly large variations of A T . Since X >> ks, the condition xA T >> kSA S 
can be satisfied when the temperature stratification scale is much smaller than the salinity 
stratification scale. Based on Eq. (2.2), this implies that DGWs are stable against local 
variations of the temperature gradients in the medium. 

In real physical situations involving heat sources with above-critical power, convective 
motion of the medium takes place in the vicinity of the heat source (as mentioned above), so 
that the flow structure cannot be described by Eqs. (1.4). On the other hand, the convection 
zone is also bounded, and the solutions of the linearized problem are valid outside its lim- 
its, as discussed in [ii] and observed experimentally in [i, 2, 6]. In subcritical flow re- 
gimes, i.e., when the power of the heat source is below critical [2], the solutions of Eqs. 
(1.4) are valid in all space. 

It follows from the theoretical model and observations that dissipation-gravity waves 
are an essential element of the convective flow pattern of stratified media. They distort 
the initial density distribution at large distances from the source and transfer energy, mo- 
mentum, and torque. The calculated DGW pattern is qualitatively consistent with the pattern 
observed in experiments on thermoconcentration convection in liquids with a stable salinity 
gradient. 
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PROPAGATION OF PLANE SURFACE WAVES OVER AN UNDERWATER OBSTACLE 

AND A SUBMERGED PLATE 

I. V. Sturova UDC 532.59 

The investigation, in the linear formulation, of wave diffraction by bottom irregulari- 
ties with shadow zones, begun in [i], is continued. A rectangular underwater obstacle with 
a "lid" and a rigidly clamped horizontal plate (Fig. i) are considered. 

Wave scattering by an ordinary rectangular obstacle (without a "lid") has been studied 
in detail, both theoretically [2-5] and experimentally [6]. In [5] it is assumed that away 
from the obstacle the fluid is infinitely deep. Wave scattering by a horizontal plate on a 
free surface was examined in [3, 7]. 

i. Waves are propagated in a layer of ideal incompressible liquid of depth HI, on the 
bottom of which lies a rectangular obstacle with a "lid" in the form of an infinitely thin 
rigid horizontal plate (Fig. la). This plate is located at a depth H 2 below the free sur- 
face. The length of the plate L may be greater than the base of the obstacle AB, so that on 
the left and right of the obstacle there are cavities of length s and s respectively. The 
coordinate system is so chosen that the x axis coincides with the undisturbed level of the 
free surface, and the y axis is directed upwards through the left-hand end of the lid. The 
motion of the fluid is assumed to be potential everywhere except at the corner points. 

The approaching wave travels in the direction of the positive x axis and is determined 

iagchkl(y + H,) exp(iklx); a and by t h e  v e l o c i t y  p o t e n t i a l  ~o(X,y,t):%(x, y)exp(-- lot), where % =  ochklH 1 

a r e  t he  ampl i t ude  and f r e q u e n c y  o f  t he  wave, and g i s  t he  a c c e l e r a t i o n  of  g r a v i t y ;  t he  wave 
number kz i s  de t e r mi ned  from t h e  e q u a t i o n  

~ = gklthklHl" ( i. I) 

Here and in what f o l l o w s  in  a l l  t h e  e x p r e s s i o n s  c o n t a i n i n g  t he  f a c t o r  e x p ( - i a t )  on ly  the  r e a l  
p a r t  has p h y s i c a l  s i g n i f i c a n c e .  

We w i l l  c o n s i d e r  s t e a d y  waves and seek the  v e l o c i t y  p o t e n t i a l  of  t h e  d i s t u r b e d  f low in 
t he  form r  y ,  t )  = ~ (x ,  y ) e x p ( - i a t ) .  In o r d e r  to  de t e rmine  ~ ( x ,  y) we must s o l v e  t he  
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